Soil moisture variations affect short-term plant-microbial competition for ammonium, glycine, and glutamate
نویسندگان
چکیده
We tested whether the presence of plant roots would impair the uptake of ammonium ([Formula: see text]), glycine, and glutamate by microorganisms in a deciduous forest soil exposed to constant or variable moisture in a short-term (24-h) experiment. The uptake of (15)NH4 and dual labeled amino acids by the grass Festuca gigantea L. and soil microorganisms was determined in planted and unplanted soils maintained at 60% WHC (water holding capacity) or subject to drying and rewetting. The experiment used a design by which competition was tested in soils that were primed by plant roots to the same extent in the planted and unplanted treatments. Festuca gigantea had no effect on microbial N uptake in the constant moist soil, but its presence doubled the microbial [Formula: see text] uptake in the dried and rewetted soil compared with the constant moist. The drying and rewetting reduced by half or more the [Formula: see text] uptake by F. gigantea, despite more than 60% increase in the soil concentration of [Formula: see text]. At the same time, the amino acid and [Formula: see text]-N became equally valued in the plant uptake, suggesting that plants used amino acids to compensate for the lower [Formula: see text] acquisition. Our results demonstrate the flexibility in plant-microbial use of different N sources in response to soil moisture fluctuations and emphasize the importance of including transient soil conditions in experiments on resource competition between plants and soil microorganisms. Competition between plants and microorganisms for N is demonstrated by a combination of removal of one of the potential competitors, the plant, and subsequent observations of the uptake of N in the organisms in soils that differ only in the physical presence and absence of the plant during a short assay. Those conditions are necessary to unequivocally test for competition.
منابع مشابه
Inter-Specific Competition, but Not Different Soil Microbial Communities, Affects N Chemical Forms Uptake by Competing Graminoids of Upland Grasslands
Evidence that plants differ in their ability to take up both organic (ON) and inorganic (IN) forms of nitrogen (N) has increased ecologists' interest on resource-based plant competition. However, whether plant uptake of IN and ON responds to differences in soil microbial community composition and/or functioning has not yet been explored, despite soil microbes playing a key role in N cycling. He...
متن کاملShort and Long-Term Soil Moisture Effects of Liana Removal in a Seasonally Moist Tropical Forest
Lianas (woody vines) are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects so...
متن کاملPlant water use affects competition for nitrogen: why drought favors invasive species in California.
Abstract: Classic resource competition theory typically treats resource supply rates as independent; however, nutrient supplies can be affected by plants indirectly, with important consequences for model predictions. We demonstrate this general phenomenon by using a model in which competition for nitrogen is mediated by soil moisture, with competitive outcomes including coexistence and multiple...
متن کاملNitrogen acquisition by plants and microorganisms in a temperate grassland
Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term (15)N experiments with NH4(+), NO3(-), and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and tempora...
متن کاملChanges in the Size of the Active Microbial Pool Explain Short-Term Soil Respiratory Responses to Temperature and Moisture
Heterotrophic respiration contributes a substantial fraction of the carbon flux from soil to atmosphere, and responds strongly to environmental conditions. However, the mechanisms through which short-term changes in environmental conditions affect microbial respiration still remain unclear. Microorganisms cope with adverse environmental conditions by transitioning into and out of dormancy, a st...
متن کامل